Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice.
نویسندگان
چکیده
We have already established human xenographic models for the effect of lysophosphatidic acid (LPA) on tumor metastasis in vivo. The purpose of this work is to establish a preclinical LPA effect model in immunocompetent mice. We first characterized the mouse epithelial ovarian cancer (EOC) cell line ID8 for its responsiveness to LPA in cell proliferation, migration, and invasion and compared these properties with those of human EOC. The signaling pathways related to cell migration were further investigated using pharmacologic and genetic approaches. The effects of LPA on the tumorigenesis of ID8 cells and mouse survival were then examined using two different mouse models (i.p. and orthotopic injections). LPA stimulated cell proliferation, migration, and invasion of mouse EOC ID8 cells in a manner closely resembling its activity in human EOC cells. The signaling pathways involved in LPA-induced cell migration in ID8 cells were also similar to those identified in human EOC cells. We have identified cyclooxygenase-1 and 15-lipoxygenase as two new signaling molecules involved in LPA-induced cell migration in both human and mouse EOC cells. In addition, LPA enhanced the tumorigenesis/metastasis of ID8 cell in vivo as assessed by increased tumor size, early onset of ascites formation, and reduced animal survival. We have established the first LPA-EOC preclinical model in immunocompetent mice. Because ID8 cells respond to LPA similar to human EOC cells, this model is very valuable in developing and testing therapeutic reagents targeting LPA in EOC.
منابع مشابه
Sphingosine 1-phosphate interacts with Survivin pathway to enhance tumorigenesis in cancer cells
Objective(s):Degradation of sphingosine 1-phosphate (S1P), as a bioactive lipid, or deregulation of its production involves in tumor progression, metastasis and chemoresistance. Since the tumor progression effects of S1P and its mechanism in chronic lymphoblastic leukemia and non-small cell lung cancer is not fully understood, we investigated the role and one of the mechanisms of S1P in tumor p...
متن کاملEffect of lysophosphatidic acid on the follicular development and the expression of lysophosphatidic acid receptor genes during in vitro culture of mouse ovary
Lysophosphatidic acid (LPA) known as a serum-derived growth factor, is involved in several cell physiological functions in the female reproductive system including: oocyte maturation, in vitro fertilization and embryo implantation by its transmembrane G protein-coupled receptors. The aim of the present study was to examine the effect of LPA on in vitro follicular development o...
متن کاملEffect of the LPA-mediated CXCL12-CXCR4 axis in the tumor proliferation, migration and invasion of ovarian cancer cell lines
Ovarian cancer is the most fatal gynecological cancer, with a 5-year survival rate of only 30%. Lysophosphatidic acid (LPA), which possesses growth factor-like functions, is a major regulatory factor in the peritoneal metastasis of ovarian cancer. LPA stimulates the expression of numerous genes that are associated with angiogenesis and metastasis. Ovarian epithelial carcinoma specifically expre...
متن کاملHypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and stimulates growth and other activities of ovarian cancer cells in vitro. Tissue hypoxia is a critical factor for tumor aggressiveness and metastasis in cancers. We tested whether the ascites of ovarian cancer is hypoxic and whether hypoxia influences the effects of LPA on ovarian cancer cells. We found that ovaria...
متن کاملDecreased Peritoneal Ovarian Cancer Growth in Mice Lacking Expression of Lipid Phosphate Phosphohydrolase 1
Lysophosphatidic acid (LPA) is a bioactive lipid that enhances ovarian cancer cell proliferation, migration and invasion in vitro and stimulates peritoneal metastasis in vivo. LPA is generated through the action of autotaxin or phospholipases, and degradation begins with lipid phosphate phosphohydrolase (LPP)-dependent removal of the phosphate. While the effects of LPA on ovarian cancer progres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2009